

DES Customer Meeting Spring FY24 June 7, 2024

Presented by: MNDES Project Administrator Thermal Engineering Group, Inc

Agenda

- Welcome!
- 2. Historic Customer Expenses
- 3. Historic Customer Consumption
- 4. Historic System Efficiency
- 5. Natural Gas Pricing
- 6. DES FY24 Costs to Date
- 7. Water Treatment
- 8. DES Projects
- 9. Questions and Answers
- 10. Adjourn

1. Welcome DES Customers!

DES Contacts

- Thermal Engineering Group, Inc Dan Coyle, Contract Administrator 615-264-2611 (dcoyle@thermalegi.com)
- Constellation Mike Winters, General Manager 615-742-1883
 Ext. 30 (<u>michael.winters@constellation.com</u>)
- Constellation Chuck Tucker, Customer Service 615-742-1883
 Ext. 28 (constellation.com)
- Constellation Rosalyn Manning, Invoicing 615-742-1883
 Ext. 29 (<u>rosalyn.manning@constellation.com</u>)
- Metro Water Services Adrienne Fancher, Metro Liaison 615-862-4820 (adrienne.fancher@nashville.gov)

2. Historical Customer Expenses

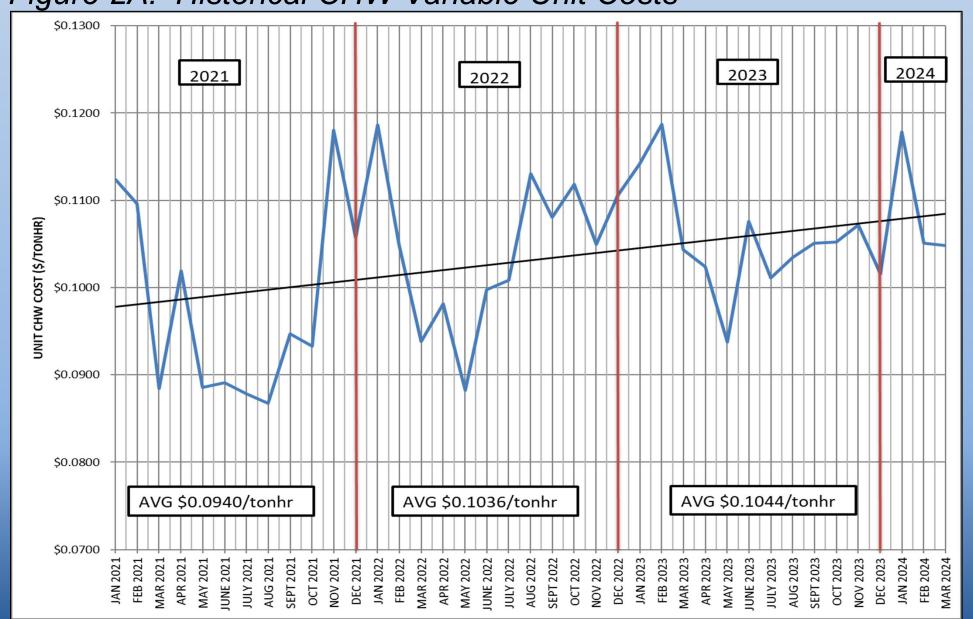
Figure 2A. Historical Chilled Water Variable Unit Costs

Figure 2B. Historical Steam Variable Unit Costs

Table 2. Rolling Twelve Month Expenses

Customer Charges

- Customer charges include fixed and variable costs
- Fixed costs are based on contract demand:
 - Contract Capacity Charge
 - Fixed Operating Charge
 - EDS Improvement Charge
 - Metro Incremental
 - Engineering
 - Insurance
 - EDS Maintenance Allocation
 - EDS Electricity
- Variable costs based on monthly consumption:
 - Utilities
 - Chemicals



Customer Charges

- Variable costs vary each month based on actual costs and prorata portion of monthly metered consumption (tonhrs and lbs)
- Capacity Charges + Variable Costs + Taxes = Total Invoice
- Avg Unit Cost = $\frac{\text{Total Invoice}}{\text{Monthly Consumption}}$ (\$/tonhr or \$/Mlb)
- If consumption is low in a month, variable costs and total invoice will be low but Avg Unit Cost will be high.
- If consumption is high, variable costs and total invoice will be high, but Avg Unit Cost will be low.

Figure 2A. Historical CHW Variable Unit Costs

Figure 2B. Historical Steam Variable Unit Costs

Table 2. Rolling Twelve Month Expenses

		Steam -	Rolling 12 Mon	nth	Chilled Water - Rolling 12 Month				
		Apr 2022- Mar 2023	Apr 2023- Mar 2024	% Diff.	Apr 2022- Mar 2023	Apr 2023- Mar 2024	% Diff.		
Private	Cost	\$ 1,796,226	\$ 1,686,486	-6.11%	\$ 4,627,769	\$ 4,502,232	-2.71%		
	Usage (lbs or tonhrs)	94,042,066	96,642,016	2.76%	23,625,674	21,988,652	-6.93%		
State	Cost	\$ 2,307,024	\$ 2,072,589	-10.16%	\$ 3,546,793	\$ 3,505,870	-1.15%		
	Usage (lbs or tonhrs)	114,254,268	105,619,768	-7.56%	14,445,087	13,264,078	-8.18%		
Metro	Cost	\$ 2,290,836	\$ 2,045,984	-10.69%	\$ 5,134,396	\$ 5,087,979	-0.90%		
	Usage (lbs or tonhrs)	136,214,341	133,122,446	-2.27%	26,913,888	26,527,950	-1.43%		
Aggregate	Cost	\$ 6,394,087	\$ 5,805,060	-9.21%	\$13,308,958	\$13,096,081	-1.60%		
	Usage (lbs or tonhrs)	344,510,675	335,384,230	-2.65%	64,984,649	61,780,680	-4.93%		
	Unit Cost	\$ 18.56	\$ 17.31	-6.7%	\$ 0.205	\$ 0.212	3.50%		

MFA, True-up, late fees and misc. are not included in values shown

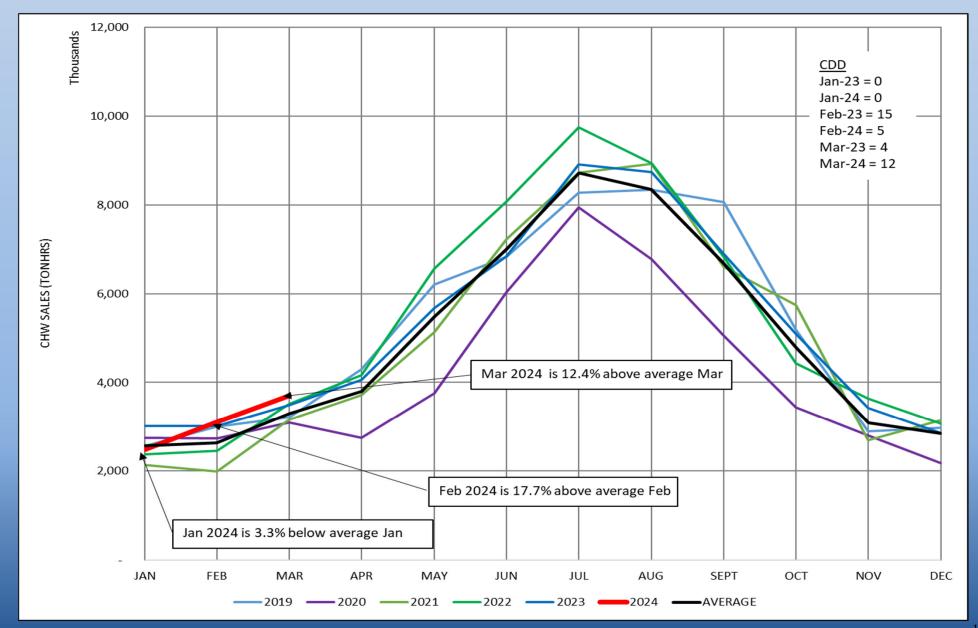

3. Historical Customer Consumption

Figure 3A. Historical CHW Consumptions

Figure 3B. Historical Steam Consumptions

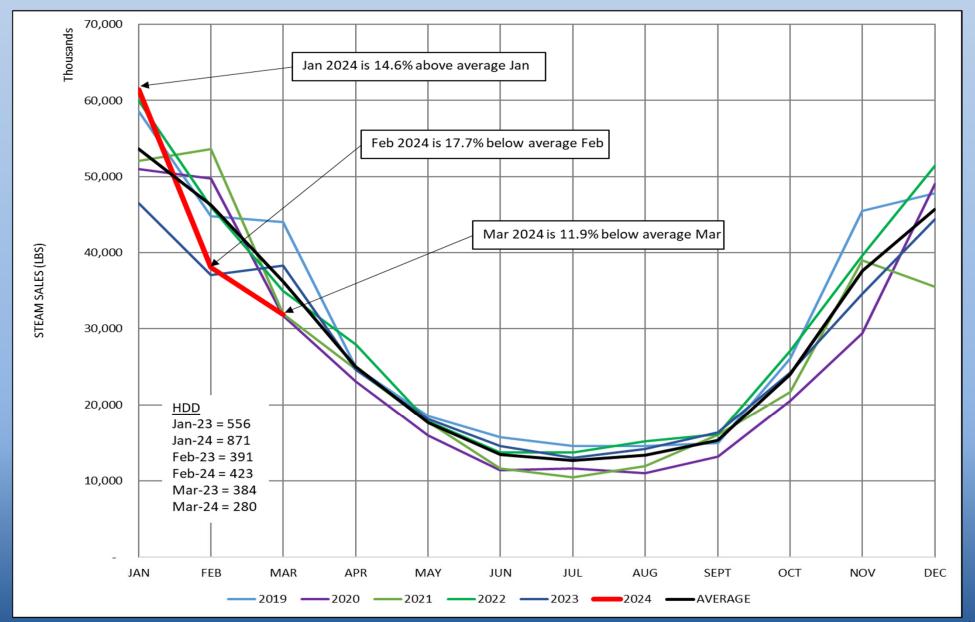
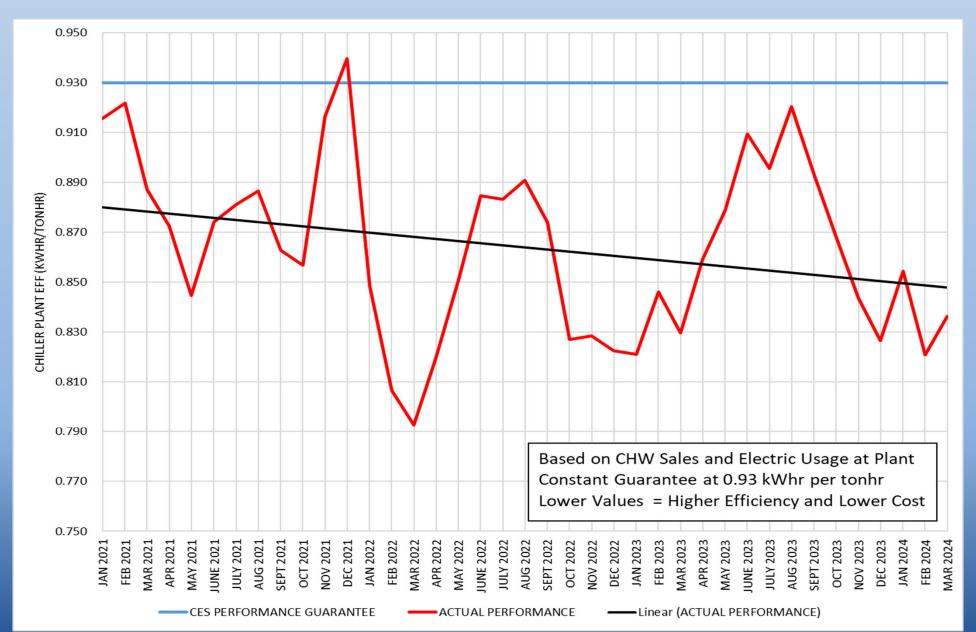


Figure 3A. Historical CHW Consumptions

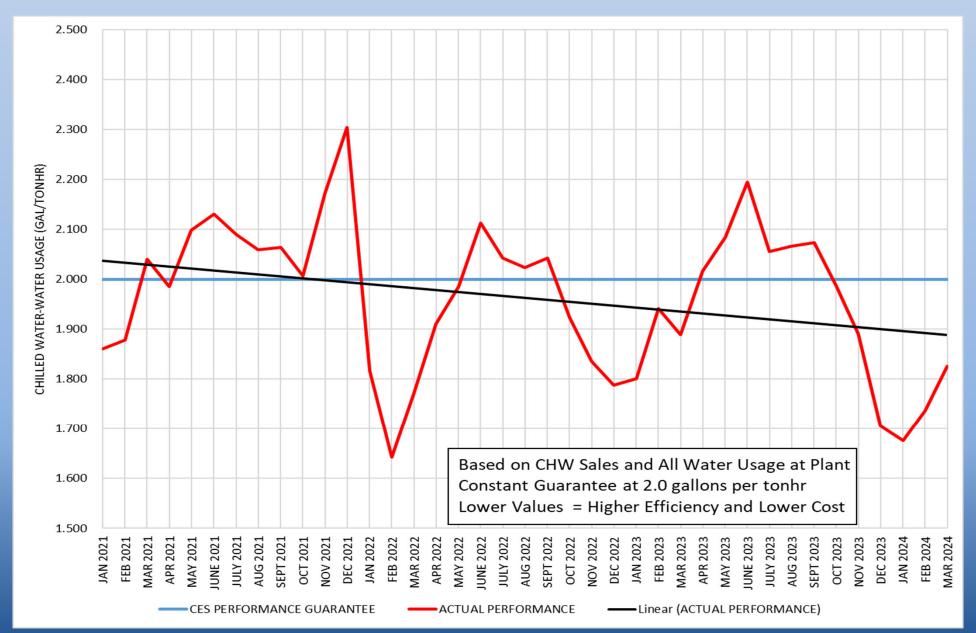
Figure 3B. Historical Steam Consumptions

4. Historical System Efficiency

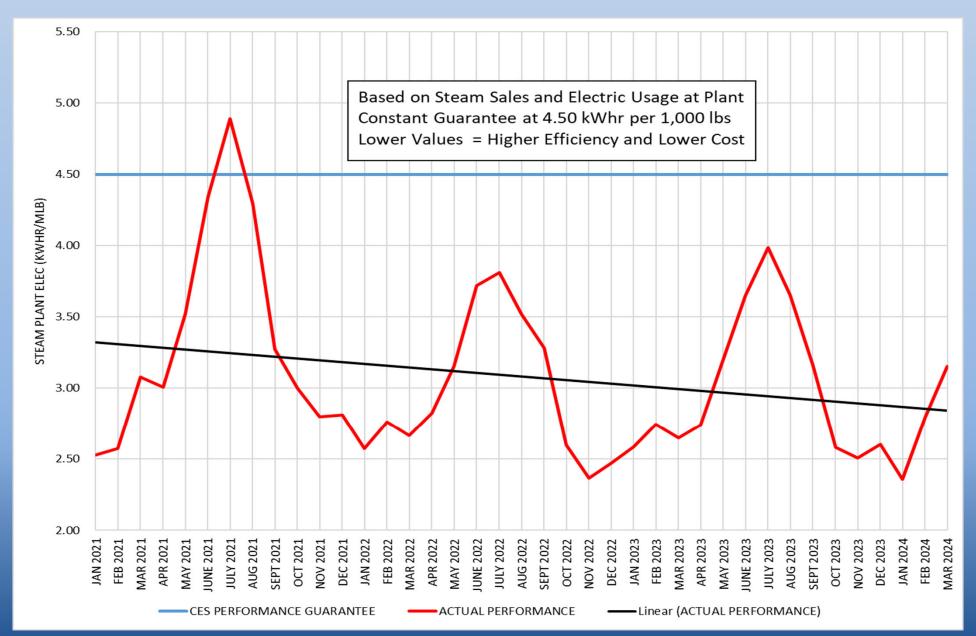
Five Efficiency Metrics:


- CHW: Electricity per unit of sales (kWhr/tonhr)
- CHW: Water per unit of sales (equation) (gallons/tonhr)
- STM: Fuel per unit of sendout (equation) (dktherm/Mlb)
- STM: Water per unit of sendout (equation) (gallons)
- STM: Electricity per unit of sales (kWhr/Mlb)

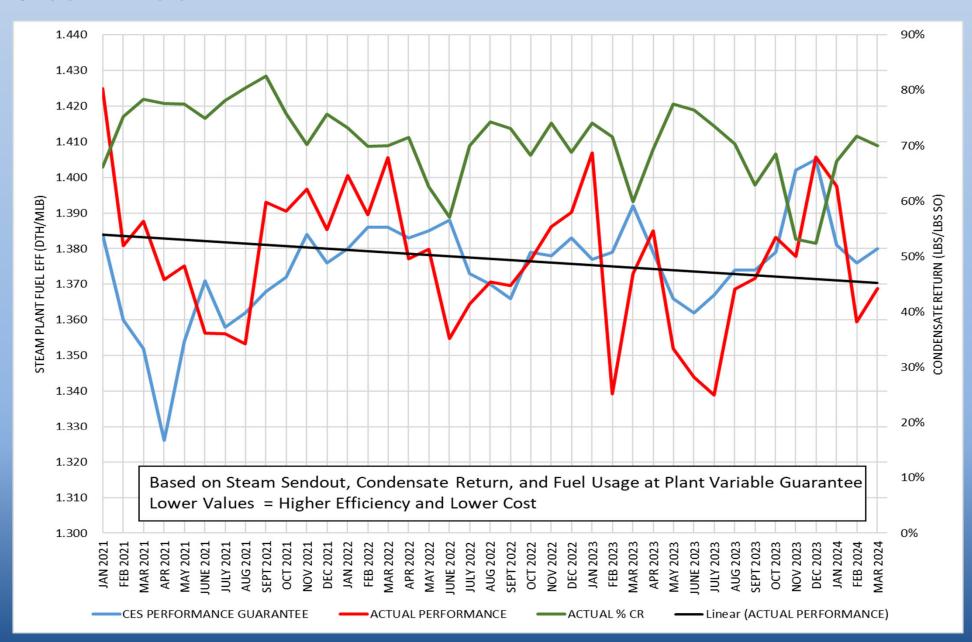
- Cost benefit to customers based on CES's operation of system – Fuel Efficiency Adjustment
 - Customer costs are "capped" based on efficiency guarantees
 - CES pays 100% of the cost associated with not meeting the performance guarantee each month
 - Customers receive 75% of the cost savings when CES exceeds the performance guarantee each month
 - CES receives 25% of the cost savings when they exceed the performance guarantee each month



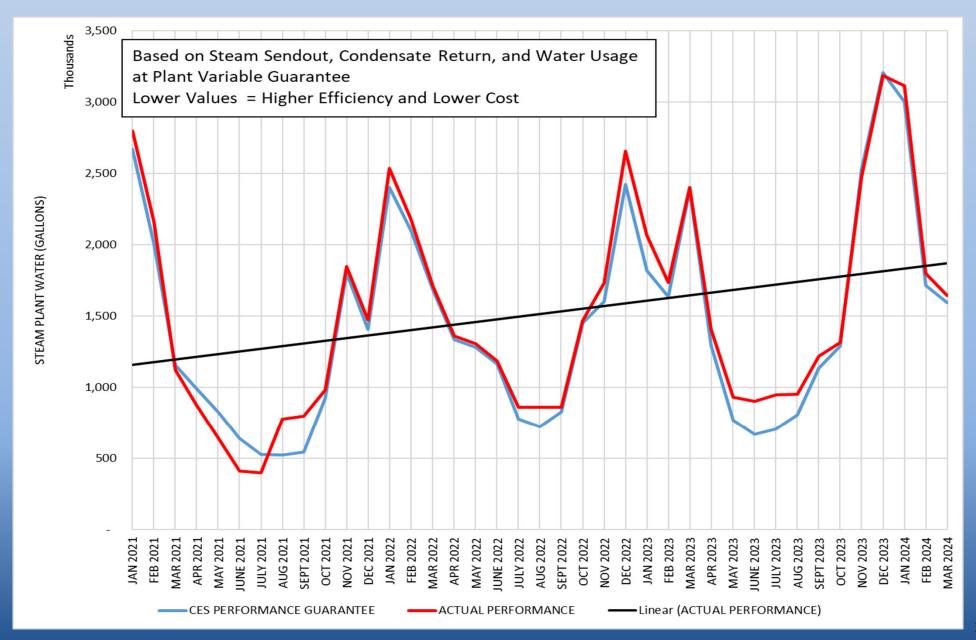
Chilled Water: Electric



Chilled Water: Water

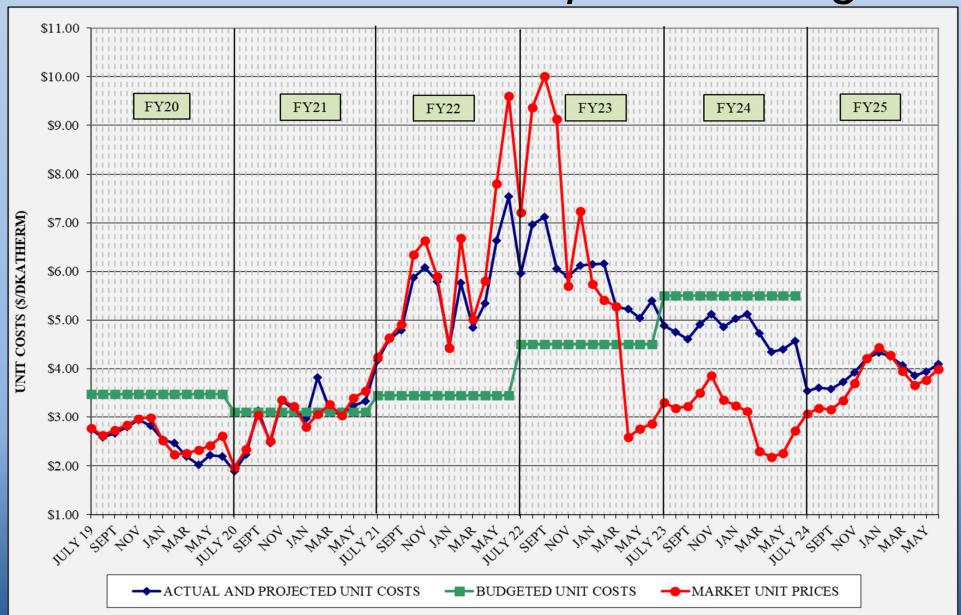


Steam: Electric



Steam: Fuel

Steam: Water



What Can You Do To Improve System Efficiency?

- ✓ Return chilled water at a high temperature (high delta T's!)
 - ✓ Reduces building and system pumping cost
 - ✓ Reduces or eliminates TIFs
- Report or repair all steam, condensate, and chilled water leaks
 - ✓ Reduces make-up water to systems
 - ✓ Reduces additional water treatment
 - ✓ High condensate return increases boiler plant efficiency and reduces fuel use
 - ✓ Make sure your steam traps are working properly
 - ✓ Return the condensate!
- Prevent contamination of condensate
 - ✓ Cross contamination from hot water in heat exchangers increases hardness.
 - ✓ Iron contamination from building piping and equipment

5. Natural Gas and Propane Pricing

Table 5: FY24 Gas Spending & Budget Comparison

	Actual FY24 To Mar 31	Budget FY24	Percent Difference
Steam Sendout (Mlbs)	320,286	342,643	-6.5%
Fuel Use (Dth) (includes propane)	441,888	491,007	-10.0%
Plant Eff (Dth/Mlb)	1.380	1.433	-3.7%
Total Gas Cost (includes propane)	\$2,174,066	\$3,301,274	-34.1%
Unit Cost of Fuel (\$/Dth)	\$4.920	\$6.525	-24.6%

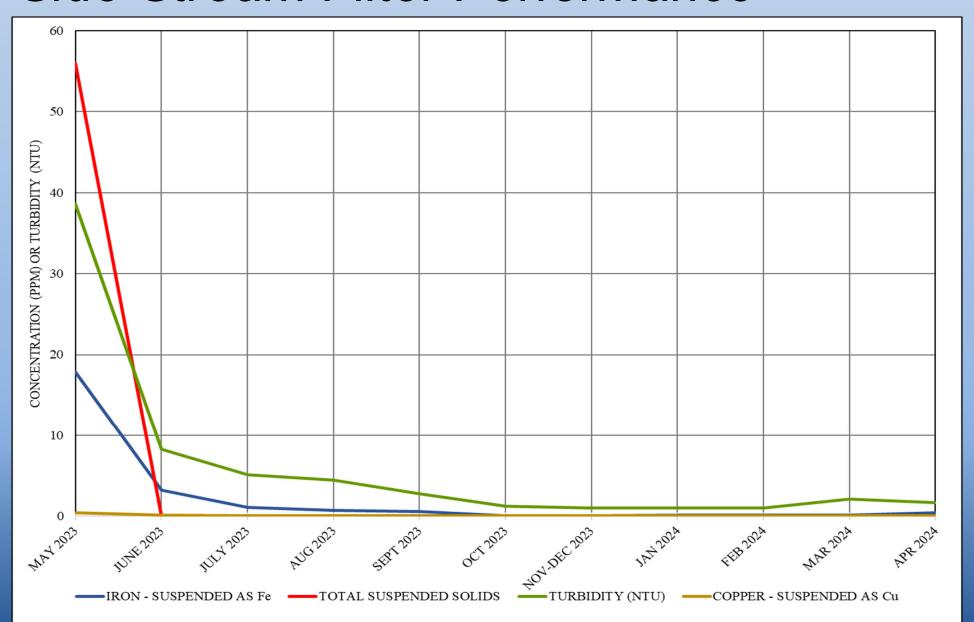
Excludes consultant fees, FEA, and pre-purchased and stored propane; Includes transportation and actual propane costs and usages. Budget values include price and weather contingencies.

6. DES FY24 Costs to Date

Item	F	Y23 Budget	F	Y24 Budget	F	Y24 Actual	Percent of
						to date	FY24 Budget
FOC's	\$	4,006,800	\$	4,127,000	\$	3,095,267	75.00%
Pass Throughs							
Administrative Costs	\$	932,100	\$	638,300	\$	540,658	84.70%
Chemicals	\$	255,700	\$	331,200	\$	208,394	62.92%
R&I Fund Transfers	\$	303,700	\$	312,900	\$	234,675	75.00%
Water/Sewer	\$	773,400	\$	1,152,000	\$	808,539	70.19%
Fuel Base	\$	2,797,256	\$	3,422,700	\$	2,256,072	65.91%
Fuel Contingency	\$	677,044	\$	764,200	\$	_	0.00%
Electricity	\$	6,394,800	\$	6,476,700	\$	3,938,431	60.81%
ORF Deposit	\$	85,800	\$	188,200	\$	141,150	75.00%
Debt Service	\$	4,311,300	\$	4,774,000	\$	3,613,237	75.69%
Total Expenses	\$	20,537,900	\$	22,187,200	\$	14,836,423	66.87%
Total Revenues	\$	20,163,600	\$	21,802,800	\$	14,906,004	68.37%
Metro Funding	\$	374,300	\$	384,400	\$	288,300	75.00%

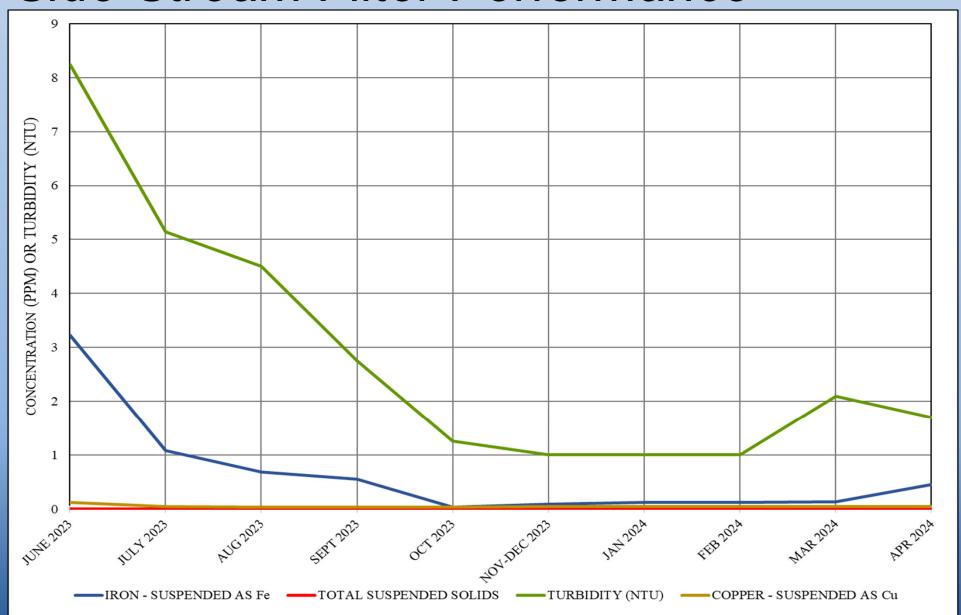
7. Water Treatment

- Steam and Condensate (Condensate Return 72%)
 - ❖ City Water Conductivity (260 µmhos)
 - ❖ Feedwater Iron (0.02 ppm)
 - Condensate Hardness (0.08 ppm CaCO3)
 - Condensate Iron (0.05 ppm)
 - Condensate pH (8.3)
- Condensing Water
 - 4.2 Cycles
 - ❖ Biologicals (10¹ CFU/ml)
- Chilled Water
 - \diamond Conductivity (314 μ mhos)
 - Corrosion
 - ❖ EGF and Customer Biologicals (10⁰ CFU/ml)
 - ❖ Side Stream Filter



Side Stream Filter

- Filter installed on chilled water return at EGF May 2023
- Filters chilled water at 500 gpm filtering all the water in about two months
- Will remove suspended solids down to 0.5 micron
- Improves water quality delivered to customers which may also improve heat transfer



Side Stream Filter Performance

Side Stream Filter Performance

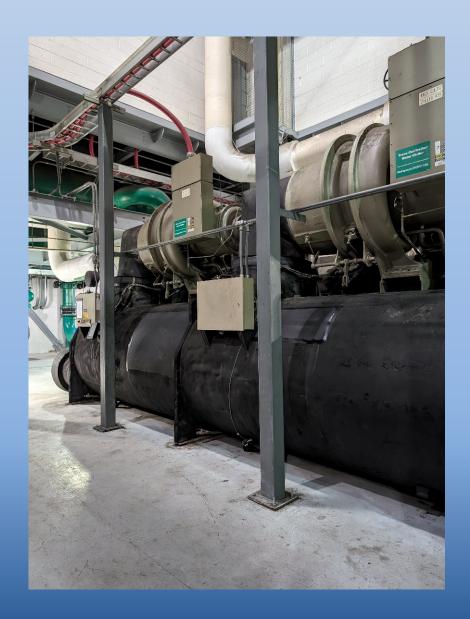
8. DES Projects

- Active Capital Projects General & Marketing
- DES 163: Peabody Union working with developer on Guthrie St. impact to DES; demolition of wall began in January.
- □ DES 192: Peabody St. Developments survey of routing down Peabody; DES plan for expansion in area with new customers.
- □ DES 195: DES Parking Area on hold pending Guthrie St. mods.
- □ DES 201: East Bank Development ongoing development and marketing activities related to the East Bank.
- □ DES 202: 7th and Commerce Hotel –building development on hold; intends to use DES CHW and STM.
- DES 203: Printer's and Banker's Alley Building building development on hold; intends to use DES CHW.
- □ DES 217: DES Service to Auto Nashville Hotel, LLC (8th and Demonbreun) expecting service during construction in late 2025; 1,300 tons chilled water contract capacity with no steam.

Capital Projects Review

Active Capital Projects – Corrosion Repair/Prevention

- □ DES 211: AA Birch Tunnel and MH D Repairs
 - □ cleaning and coating of structural steel pipe and platform supports; work anticipated starting 4th Qtr FY24.
- □ DES 218: Manholes B2, B6, B7, B8, B9 and 22B Repairs
 - □ corrosion clean-up and coating, concrete patching and sealing water infiltration; began during the 3rd Qtr; anticipate completion 4th Qtr FY24.


Capital Projects Review

- □ Active Capital Projects Repairs/Modifications
- DES 213: 4th, 7th & Broadway Tunnel Piping Slide Support Repairs
 - □ repair and replacement of pipe slides; bidding anticipated in 4th Qtr FY24.
- □ DES 219: 7th Ave Tunnel Shotcrete Extension
 - □ relocation of Metro Library steam and condensate return service piping for tunnel repairs and water infiltration mitigation; bidding anticipated 4th Qtr FY24.
- □ DES 220: MH 20 Condensate Piping Repair and Grating Addition
 - □ replacement of corroded condensate piping and the installation of grating over shaft to 7th Ave Tunnel; anticipate completion in 4th Qtr FY24.
- □ DES 221: War Memorial and Legislative Plaza Renovation
 - □ State is renovating the two buildings requiring demo of piping and rework of DES meter stations; building offline until late 2024/early 2025.

DES-217: Chiller 2 R'newal

- Chiller 2 had rotor bar failure October 2023
- Trane proposed a R'newal program to make repairs and provide new 7-Year warranty
- All rotating parts replaced plus new control panel
- Repair falls into CES responsibility but Metro agreed to pay two-thirds of cost to have new warranty
- Chiller repairs completed and fully operational March 19, 2024
- No cost to customers!

Capital Expenditures

	Spent to End of FY23	FY24 Spending	Balance to Date (04/24/24)
R&I Projects	\$4,644,774	\$339,340	\$199,684
49116-DES Infrastructure Fund	\$5,011,324	\$1,018,950	\$3,343,597
Total	\$9,656,098	\$1,358,290	\$3,543,281

9. Questions and Answers

Please complete and submit survey

10. Adjourn